Introduction

CryoMaster Series liquid nitrogen containers combine with the advantages of low liquid nitrogen consumption and medium range storage capacity to meet unique requirements of professional customers all over the world. CryoMaster Series containers provide high efficiency of large capacity sample cryopreservation with light weight and small space occupying. The racks and lockable lids are standard to assure the safety of samples. Mainly apply in medical field, bio-bank, laboratory field.

Key Features

1. Racks and boxes included
2. Dual-lock construction
3. Durable aluminum construction
4. Larger storage capacity, less liquid nitrogen consumption
5. Liquid level monitoring system (optional)
6. Mobile roller bases (optional)
7. 5 year vacuum warranty
8. Compatible with main brands standard storage boxes
Real-time Liquid Level Monitoring System

Liquid level monitoring system continuously monitors the temperature inside the container. The liquid level monitoring system matches all CryoMaster models, optimal choice for long time monitoring of samples storage. It realizes reminding users to add liquid nitrogen timely too. There are three models, CryoMonitor 1000/2000 and Smart Cap.

Smart Cap
The Smart Cap is a liquid nitrogen level sensor with a highly integrated IoT module that monitors the liquid nitrogen tank level (-600mm) and the tank mouth temperature (-200°C~150°C). Intelligent transmission: IoT 2.4G technology, intelligent matching data optimal transmission path. Ultra-low power consumption: The built-in power supply works independently for more than two years. Remote transmission: Effective transmission distance is more than 200 meters, effectively ensuring signal penetration and data stability.

Ultra Low-power Consumption Liquid Level Monitoring System
Data collected by Smart Sensor, and then transferred to cloud storage by Black Box. Users only have to log on Cold Cloud to query and download data. This system is the latest monitoring product easy installation and accurate data.

Technical Specification

<table>
<thead>
<tr>
<th>Model</th>
<th>CryoMaster 100</th>
<th>CryoMaster 600</th>
<th>CryoMaster 750</th>
<th>CryoMaster 900</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2L&2L Vials (25/box)</td>
<td>100</td>
<td>600</td>
<td>750</td>
<td>900</td>
</tr>
<tr>
<td>Number of Racks</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Blood Per Rack</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>25ml Blood bag No. of Blood bags/Per Rack</td>
<td>34</td>
<td>34</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>Number of Racks</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Performance</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>LN2 Capacity (L)</td>
<td>10</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Static Evaporation Rate (L/day)</td>
<td>0.37</td>
<td>0.33</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Static holdover time (day)</td>
<td>54</td>
<td>90</td>
<td>97</td>
<td>118</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>CryoMaster 2400</th>
<th>CryoMaster 3000</th>
<th>CryoMaster 3600</th>
<th>CryoMaster 4800</th>
<th>CryoMaster 6000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2L&2L Vials (100/box)</td>
<td>2400</td>
<td>3000</td>
<td>3600</td>
<td>4800</td>
<td>4600</td>
</tr>
<tr>
<td>Number of Racks</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Blood Per Rack</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>25ml Blood bag No. of Blood bags/Per Rack</td>
<td>80</td>
<td>90</td>
<td>120</td>
<td>160</td>
<td>150</td>
</tr>
<tr>
<td>Number of Racks</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>50ml Blood bag No. of Blood bags/Per Rack</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Number of Racks</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Performance</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>LN2 Capacity (L)</td>
<td>45</td>
<td>90</td>
<td>115</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>Static Evaporation Rate (L/day)</td>
<td>0.78</td>
<td>0.97</td>
<td>0.94</td>
<td>0.96</td>
<td>0.96</td>
</tr>
<tr>
<td>Static holdover time (day)</td>
<td>83</td>
<td>122</td>
<td>122</td>
<td>146</td>
<td>144</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Model</th>
<th>CryoMaster 1000</th>
<th>CryoMaster 2000</th>
<th>CryoMaster 3000</th>
<th>CryoMaster 3600</th>
<th>CryoMaster 4800</th>
<th>CryoMaster 6000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Blood bags Per Rack</td>
<td>50ml</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
<td>300</td>
</tr>
<tr>
<td>Number of Racks</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>50ml Blood bag</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Performance</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>LN2 Capacity (L)</td>
<td>65</td>
<td>95</td>
<td>115</td>
<td>140</td>
<td>140</td>
<td>140</td>
</tr>
<tr>
<td>Static Evaporation Rate (L/day)</td>
<td>0.78</td>
<td>0.97</td>
<td>0.94</td>
<td>0.96</td>
<td>0.96</td>
<td>0.96</td>
</tr>
<tr>
<td>Static holdover time (day)</td>
<td>83</td>
<td>122</td>
<td>122</td>
<td>146</td>
<td>144</td>
<td>144</td>
</tr>
</tbody>
</table>

- Static evaporation rate and static holding time are nominal. Actual rate and holding time will be affected by the condition of container usage, atmospheric conditions, and manufacturing tolerances.
- Normal Working Duration is an arbitrary reference, applying to estimate container performance under normal operating conditions. Actual working time may vary due to atmospheric conditions, container usage history, manufacturing tolerances and individual patterns of usage. Divide static holding days by 1.6, and you get empirical value.